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The time behavior of bright spatial solitons in biased photorefractive media is investigated within the
framework of a bidimensional band transport model. Biasing the photorefractive media requires an externally
applied electric field or the presence of a photovoltaic effect. These two basically different phenomena are
shown to be equivalent and additive. The mechanism of space-charge field buildup is analytically expressed,
leading to a time-dependent wave propagation equation in generic photorefractive media. The temporal be-
havior of the soliton solutions to this equation is investigated. It shows the evolution of the soliton beam from
the time the external electric field is applied to the final steady-state soliton. On the way, the so-called
quasisteady soliton is retrieved, along with its properties. Furthermore, the photovoltaic soliton is described by
the wave propagation equation: its behavior is the same as that of the steady-state soliton, the transient states
included. Finally, low-power photorefractive bright spatial solitons are generated in a Bi12TiO20 crystal with a
He-Ne laser and their temporal behavior is investigated, thus providing an experimental validation of our
theoretical considerations.@S1063-651X~96!06912-7#

PACS number~s!: 42.65.Tg,42.65.Sf,42.65.Hw,42.65.Jx

INTRODUCTION

The photorefractive effect is the result of a complex com-
bination of various physical phenomena. The most com-
monly studied photorefractive effect stems from charge
transport and trapping, which induce a space-charge electric
field and thus an index variation. The propagation of a single
light beam through such a medium has been the focus of
many recent studies. In particular, bright spatial solitons
have been predicted@1–4#, leading to the observation of pho-
torefractive self-focusing effects@5# and of photorefractive
spatial solitons@6–9#. These phenomena occur only if the
photorefractive material is properly biased by an externally
applied electric field or by the presence of a photovoltaic
nonlinearity.

The self-focusing process has been found to lead to three
different types of bright spatial soliton: the quasi-steady-state
soliton @1,2,10#, which has a limited lifetime and does not
depend on light intensity as long as it is much larger than the
dark irradiance; the screening soliton@7,11#, which occurs at
steady state and is due to the partial screening of the exter-
nally applied electric field; and the photovoltaic soliton
@8,12#, which can be obtained without any external electric
field, the photorefractive material being biased by the pres-
ence of the photovoltaic effect.

The ability to generate spatial solitons at optical powers in
the range of the mW/cm2 level seems promising for applica-
tions such as all-optical routing or beam reshaping. The ma-
jor drawback of the photorefractive effect is, however, its
low response time when compared to that of the Kerr effect,
which has been previously found to allow spatial soliton
propagation as well@13#. That is the reason why the temporal
behavior of the photorefractive soliton beam has to be stud-
ied carefully. A nonstationary bidimensional model leading
to numerical simulations has been developed recently
@14,15#. However, it does not provide an explicit wave

propagation equation. Therefore, in order to achieve a further
understanding of the phenomena involved, a simpler model
that can lead to a time-dependent wave propagation equation
has to be developed. In this paper, such a theory is proposed
and it is suggested that linking the three types of soliton
through one partial differential equation depending on the
time is possible, within the framework of a bidimensional
band-transport model. The time evolution of the photorefrac-
tive soliton profile is numerically evaluated and the key role
played by the saturation process is shown. Consistent experi-
mental evidence on a Bi12TiO20 crystal is then provided.

I. THEORETICAL BASIS AND APPROXIMATIONS

In a crystal whose dimensions are considered to be infi-
nite and under the standard assumption of slow variation
along the transversal directionx, the band-transport model
reduced to one dimension can lead to an analytical expres-
sion of the space-charge field. To achieve it, further approxi-
mations concerning charge-carrier densities are needed and
detailed below. A wave propagation equation can then be
derived.

The band-transport model is summarized in a very general
manner by the set of equations~1! developed by Kukhtarev
et al. @16#,
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The densitiesND
1 andne of ionized donors and electrons are

functions of space and time, as well as the charge and current
densitiesr and J, the electric fieldE, and the beam local
power densityI em. ND andNA are the densities of donors
and acceptors,b and s are the thermal and photoexcitation
coefficients,j is the recombination constant,e is the elemen-
tary charge,«0 is the electric permeability of the vacuum,
«̂ r is the static dielectric tensor,m is the electron mobility,
kB is the Boltzmann constant,T is the temperature, and
bph is the component of the photovoltaic tensor along the
ferroelectricc axis, the other components being neglected. In
the following, thex direction is along thec axis.

For the sake of simplicity, we will consider an electro-
magnetic wave that propagates alongz and is allowed to
diffract in only one directionx along the ferroelectricc axis.
Under this assumption, the current densityJ expressed in
~1e! is then allowed to be directed in only one direction. This
model does not allowJ to do vortices like in Ref.@14#.
Nevertheless, although this model forces the current distribu-
tion to be along thex direction, the current loop can be
closed if the crystal faces are linked by a conductor, which is
the case if an electric field is applied.

Under this assumption the set of equations~1! reduces to
the set of equations
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« r is the component of the static dielectric tensor along thex
direction.

In typical photorefractive media and provided light inten-
sity is not too high, the density of free electrons compared to
that of donors and acceptors can be neglected:NA@ne . This
implies that the densities of ionized donors and acceptors are
quasiequal, which, along with the slowly varying assump-
tion, implies that

eNA@«0« r
]E

]x
.

The latter approximation is akin to writing that the Debye
wave number~see Sec. II A for a precise definition! is much
larger than unity@14#.

II. STEADY-STATE STUDY

A. Further approximations and a space-charge field
general expression

Under steady-state conditions and under the assumptions
stated above, the set of equations~2! can be reduced to a

single differential equation~3! linking the space-charge field
E, the total light intensityI , and their spatial derivatives,
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Heren0 is the free-electron density generated by an arbitrary
uniform illumination I 0:
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I 0
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.

I d5b/s is the dark irradiance,kD5Ae2NA /kBT«0« r is the
Debye wave number, andEph5bphjNA /ems is the electric
field characteristic of the photovoltaic effect. The quantity
I5I em1I d is the generalized light intensity, taking in ac-
count both thermal and photoexcitation, and is thus a func-
tion of the transverse spatial coordinatex.

Assuming that the recombination rate is high enough so
that NDsI!jNA

2 @17# and considering thatkD@1, the last
term of Eq.~3! compared to the first two can be neglected.
Furthermore, if typical quantitative values are considered for
the remaining two terms, the second one can be neglected by
comparison to the first one. Therefore Eq.~3! is reduced to

em@EphI 81~ IE !8#1kBTmI 950. ~4!

Introducing a generalized space-charge electric field
Et5E1Eph, it is straightforward to show that Eq.~4! can
be reduced to

~ IEt!81
kBT

e
I 950. ~5!

This latter differential equation links two functions of the
space variable:I andEt . It can, however, be integrated so as
to give an expression ofEt as a function ifI .

B. Boundary conditions and solution

Solving Eq.~5! requires initial conditions on bothE and
I . The material being assumed infinite in thex direction, the
beam influence can be considered to be limited to its vicin-
ity: all the derivatives ofI are considered null far from the
beam. However, only the hypothesis limx→`I 8(x)50 is
strictly needed. Therefore, the useful part of the beamI em
vanishes at infinity: limx→`I5I d . Furthermore, the electric
field far from the beam remains quasiunaffected: limx→`E
5Eext⇔ limx→`Et5Eext1Eph, Eext being simply the volt-
age applied to the crystal, divided by the crystal width. Un-
der those conditions, the generalized electric fieldEt can be
expressed as

Et5
~Eext1Eph!I d

I
2

kBT

e

I 8

I
. ~6!

Equation~6! shows the similar role played by the external
electric fieldEext and by the photovoltaic effect whose influ-
ence is shown byEph. This symmetry between these basi-
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cally different two physical processes will be seen through-
out the paper to the final wave propagation equation~WPE!.

C. Wave propagation equation

1. General expression of the WPE

The propagation of an electromagnetic wave in a medium
with a low index modulationdn and negligible absorption
can be expressed as
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z is the propagation direction,x is the direction in which the
beam is allowed to diffract,E is the amplitude of the beam
electric field,k is the wave vector, andn is the base refrac-
tive index.

Via the Pockels effect~or electro-optic effect!, the index
modulation is directly proportional to the space-charge elec-
tric field, via the effective electro-optic coefficientr eff :

dn52 1
2n

3r effE. ~8!

If we leave out the constant refractive index change induced
by I d , a new wave propagation equation can be derived from
Eqs.~6!–~8!,
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with U5E/AI d, X5x/X0, and Z5z/kX0
2, whereX0 is an

arbitrary length.
N2 is characteristic of the quasilocal mechanisms of non-

linearity and is due to drift and photovoltaic mechanisms of
transport:
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2
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The drift mechanism of transport is due to the externally
applied electric fieldEext, while the photovoltaic effect is
represented in Eq.~10! by Eph. Equation~10! again shows
how and why these two basically different phenomena can
be considered similar. Their influence on the wave propaga-
tion is shown to be additive.

An equation of the same type as~9! has been found to
exhibit bright soliton solutions@18#. These particular soliton
solutions can, however, only be achieved ifN2 is positive,
which physically means that the nonlinearity is such that
refractive index diminishes if the local optical intensity rises
@11,18#. If N2 happens to be negative, the beam is then self-
defocused.

The quantityD is characteristic of the diffusion mecha-
nism of transport and is expressed by

D5
k2n2r effX0kBT

2e
. ~11!

The diffusion mechanism of transport is essentially depen-
dent on the crystal type and on the charge-density gradient. It
has been numerically found to induce self-deflection of the

soliton beam@19#: strictly speaking, soliton beams can be
achieved only if this term is neglected.

The physical meaning of the arbitrary lengthX0, intro-
duced to render Eq.~9! dimensionless, cannot be defined
precisely here. Its real significance can only be inferred from
the mathematical solution of Eq.~9!. However, well-known
hyperbolic secant solutions of the similar nonlinear Schro¨-
dinger equation~see Sec. IIC3 below! suggest thatX0 is
closely related to the beam half-width.

2. Simplification of the WPE
by neglecting diffusion-related terms

As suggested by Ref.@18#, an interesting approach to Eq.
~9! is the case when the diffusion mechanism of transport
plays no significant role:N2@D]uUu2/]X. This is true
if the drift mechanisms due to the external field and to the
photovoltaic effect are strong enough:Eext1Eph@
(kBT/e)(1/I d)(]I /]x). In that particular case, the wave
propagation equation~9! reduces to
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Equation~12! is a generalized nonlinear Schro¨dinger equa-
tion of the form
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It is now known to exhibit soliton solutions@18#.

3. Case of intense dark irradiance

Both Eqs.~9! and ~12! clearly show the key role that the
dark irradiance plays in the photorefractive self-focusing
process. Since the dark irradiance models the thermal charge
carrier generation, it is possible to artificially increase and
control it by shedding a background uniform light upon the
whole crystal@7#.

In this condition, it is meaningful to consider the case
when the dark irradiance is much more intense than the peak
intensity of the soliton beam:uUu!1. The part of Eq.~12!
that accounts for the normalized index variationdn* is

dn*52N2
1

uUu211
. ~13!

Leaving out the constant part of the index modulation, the
above approximation implies thatdn*'N2uUu2, leading to
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This is the well-known nonlinear Schro¨dinger equation,
which again exhibits soliton solutions. It has been studied
thoroughly~see, for instance, Ref.@20#! and it exhibits well-
defined solutions for the small positive integer values ofN,
which is called the soliton order.

The linear dependence ofdn* upon uUu2 shows that un-
der the conditions detailed above, the steady-state photore-
fractive effect is similar to the Kerr effect, apart from its
much slower response time. The ability to generate spatial
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photorefractive solitons is therefore expected and confirmed
by the above analysis. Furthermore, Eq.~13! shows that the
steady-state photorefractive effect behaves, in certain condi-
tions, like a saturated Kerr effect whose coefficientN2 can
be controlled externally with, for instance, an applied volt-
age. In the next section, we will show that this has great
influence on the temporal behavior of the soliton beams.

III. TEMPORAL ANALYSIS

A. Partial steady-state and space-charge field equation

The temporal behavior of the band-transport model is
governed by Eqs.~1a! and ~1c!. Equation~1a! describes the
process of charge generation and recombination. It gives the
characteristic carriers recombination time 1/jne . Equations
~1c! and ~1e! express the current distribution continuity and
give the dielectric relaxation time«0« r /emne , which is the
time needed for a photorefractive grating to build up. There-
fore, the ratio of the characteristic relaxation time of the
donor density to that of the current density is
d5me/«0« rj. In typical photorefractive materials,d!1.
For instance, its maximum value is 231024 in LiNbO3,
131022 in BaTiO3 @14#, and 531023 in BSO @21#. This
implies that the charge density reaches its steady state much
before the current distribution, as confirmed by Yeh@17#.

Therefore, after a time longer than the charge recombina-
tion characteristic time, Eq.~1a! can be considered as a
steady state. The set of equations~15! describes this partially
steady band-transport model reduced to one dimensionx,
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With no more approximations than those detailed in the
above steady-state study, the set of equations~15! can be
reduced to a partial differential equation on space and time
linking the generalized light power densityI to the general-
ized space charge fieldEt ,
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Solving the partial differential equation~16! requires the ac-
curate definition of the boundary and initial conditions for
both I andEt . Its solution thus depends on the precise ex-
perimental conditions.

Assuming that the light beam has been present for a time
considered as infinite, an external electric fieldEext is applied
to the crystal att50. Et andI are then assumed to be stable
and to reach the steady state described by Eq.~6!. As previ-

ously defined, the beam extent is considered to be small with
respect to the crystal width and its effect is assumed to be
limited to its vicinity.

The initial condition fort50 is not straightforward. In-
deed, because of the photorefractive memory effect, the ini-
tial state of the refractive index pattern and thus of the space-
charge field depend on the crystal history. Therefore, we will
propose an incomplete general solution and analyze it for
three different assumptions on the space-charge-field initial
state.

B. General WPE and its solutions

1. Time-dependent wave propagation equation

Assuming that the light power density varies slowly
enough with time so that its last term can be neglected, Eq.
~16! can be analytically solved and yields the expression of
the generalized space charge fieldEt as a function ofI ,
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E0, the space-charge-field initial state, depends on the space
variablex.

In Eq. ~17! and in all that derive from it, the exponential
terms that describe the time response of the space-charge
field depend on the intensityI . It is important to notice thatI
is the value of the local generalized optical power density
@see below Eq.~3! for its precise definition#. It depends on
the transverse spatial coordinatex, as doesEt . This implies
that the space-charge-field buildup time constant depends on
the transverse spatial coordinate and is, in particular, shorter
where the optical power density is larger.

The space-charge fieldEt induces a refractive index
variation given by~8! that affects the wave propagation ac-
cording to~7!. The wave propagation equation~18! can thus
be derived from~17! using Eqs.~7! and ~8!,
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(5(«0« r /em)(I 0 /n0) is an energy density determined by
the crystal physical parameters. It is characteristic of the re-
laxation of the self-focusing process. It is a very intimate
characteristic of the crystal. We shall choose its value so as
to fit our experimental observations~(/I d510 s, see Sec. V
below!.

The last two terms, divided byU, represent the normal-
ized generalized space-charge field: it is of prime importance
to know the spatial and time dependence of this quantity.
EN(X,Z) is the initial normalized generalized space-charge
field. As stated above, its value cannot be defined by the
general study, for it depends on the crystal history. In the
following, three typical cases are analyzed in details.
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2. Initial state: Uniform space-charge field

The space-charge-field initial pattern is here assumed to
be uniform. This assumption cannot be physically accurate
for a beam exists prior to the sudden application of the ex-
ternal field. However, it is meaningful when charge diffusion
can be neglected, even if no external electric field is applied,
and in the absence of any photovoltaic effect. This is true, in
particular, for a Bi12TiO20 crystal. This means that, before
the electric field is applied, the crystal is a linear medium.

Under these conditions, the wave propagation is described
by Eq. ~18!, where

EN~X,Z!5N2. ~19!

Using N251 and D51022, we meet the above require-
ments. In Fig. 1 the time-dependent normalized value of the
space-charge field is shown against the normalized trans-
verse directionX for a Gaussian beam profile and for two
ratios of soliton beam peak intensity over dark irradiance: 5
and 30, respectively.

Figure 1 evidences the time behavior of the saturation
mechanism of the photorefractive effect. On the one hand,
for a not too powerful beam, the photorefractive effect does
not saturate and can be considered as quasilocal. The final
shape of the space-charge field or refractive index profile

remains roughly Gaussian. On the other hand, if the beam is
much more powerful than the dark irradiance, then the pho-
torefractive effect saturates. The final shape is no longer
Gaussian but resembles a clipped Gaussian. The interesting
part is that, during the slow process of saturation, the refrac-
tive index pattern is still Gaussian. This suggests, as pre-
sented in Sec. IV, that the soliton beam could be narrower
during the transient state than at steady state or that the self-
focusing effect could be stronger during the transient state.

Although the uniform initial state cannot be physically
reached when diffusion is not neglected, the study of this
case is interesting for understanding buildup mechanisms.
Figure 2 shows, still for a Gaussian beam, what happens if
the diffusion mechanism dominates the other ones (N2

51022, D51), the beam peak intensity being 30 times the
dark irradiance. In that case, the quasilocal part of the pho-
torefractive effect is shown to disappear: self-focusing is no
longer achieved.

3. Initial state resulting from diffusion

The initial state of the refractive index pattern is here
assumed to be due to the prior existence of the beam and to
diffusion mechanism of transport, the photovoltaic effect be-
ing neglected. In these conditions, theEN(X,Z) term in the
wave propagation equation~18! becomes

EN~X,Z!5N22D

]uUu2

]X

uUu211
. ~20!

If the diffusion effect can be neglected by comparison to the
drift mechanism created by the applied electric field, then the
initial state can be considered uniform and the study reduces
to what has been shown in Fig. 1: the photorefractive effect
is quasilocal.

On the contrary, if the diffusion effect dominates the in-
duced drift mechanism, then the applied electric field has no
noticeable effect and the refractive index pattern does not
undergo any transient state. The final steady state is shown in
Fig. 2 for t5`.

FIG. 1. Normalized space-charge field fort/Te
50,0.1,0.2,0.5,1,2,5,10,̀ from top to bottom, forN251 andD
51022. ~a! The soliton beam is five times more powerful than the
dark irradiance.~b! The soliton beam is 30 times more powerful
than the dark irradiance.

FIG. 2. Normalized space-charge field fort/Te
50,0.1,0.2,0.5,1,2,5,10,̀, the order being shown by the arrows for
a soliton beam 30 times more powerful than the dark irradiance.
HereN251022 andD51: diffusion dominates.

6870 54N. FRESSENGEAS, J. MAUFOY, AND G. KUGEL



If N251 andD51021, the two mechanisms of diffusion
and drift are on the same scale and the quasilocal and non-
local mechanisms compete. The time behavior of the space-
charge field for a Gaussian beam 30 times more powerful
than the dark irradiance is shown in Fig. 3. In that case, a
strong asymmetry due to the diffusion effect appears in the
space-charge field distribution: this suggests that the beam
intends to bend towards the deeper part. This may be an
explanation to both beam bending and beam fanning phe-
nomena, though this needs to be investigated more thor-
oughly, like in Ref.@19#.

4. Initial state resulting from both diffusion
and the photovoltaic effect

The initial state is here considered to result from the prior
existence of a beam in a generic photorefractive material
where we consider the two mechanisms of transport that re-
main in the absence of any external field: diffusion and pho-
tovoltaic. The termEN(X,Z) in the wave propagation equa-
tion ~18! becomes

EN~X,Z!5N21

Nph
2 2D

]uUu2

]X

uUu211
, ~21!

whereNph
2 is N2, in which the electric field is reduced to

Eph.
Figure 4 shows the time behavior of the space-charge

field if diffusion is neglected~N251 and D51022! and
when the quasilocal and nonlocal mechanisms compete (N2

51 andD51021). The Gaussian beam is 30 times more
powerful than the dark irradiance in both cases. HereNph

2 is
considered to be 10 times lower thanN2. Figure 4 does not
evidence a different behavior from Figs. 1 and 3. However, it
shows that the photovoltaic effect could, if needed, replace
the externally applied electric field.

5. Discussion

The time behavior of the space-charge field and thus of
the refractive index profile has been analyzed in detail in the

framework of a one-dimensional model. The photorefractive
effect has been shown to behave, in certain conditions, like a
saturated quasilocal effect. In these cases, bidimensional
self-focusing and soliton phenomena are expected and will
be shown in Sec. IV.

The saturation phenomenon is evidenced by the flat ‘‘bot-
tom’’ of Fig. 1~b!. It induces an index pattern that does not
match the beam Gaussian shape: the induced waveguide is
too wide to effectively guide the beam. Nevertheless, during
the transient state, the index profile is closer to that of the
beam: a stronger self-focusing, or a narrower soliton beam, is
expected. Its time behavior is analyzed in detail below.

The asymmetric shape of Figs. 2, 3, and 4~b!, which stems
from charge diffusion, suggests that the nonlocal effect could
induce a bending of the soliton beam towards the ‘‘deeper’’
part of the space-charge field profile. This inference is con-
firmed by the numerical analysis of Refs.@19,22#. Our analy-
sis suggests that the bending of the beam could be controlled
by an external electric field that would dominate the diffu-
sion effect so as to straighten or steer the soliton beam. In a
more general manner, it suggests that both the bending and
the width of the soliton beam can be controlled by an exter-
nal electric field.

FIG. 3. Normalized space-charge field fort/Te
50,0.1,0.2,0.5,1,2,5,10,̀ from top to bottom for a soliton beam 30
times more powerful than the dark irradiance.N251 and D
51021.

FIG. 4. Normalized space-charge field fort/Te
50,0.1,0.2,0.5,1,2,5,10,̀ from top to bottom for a soliton beam 30
times more powerful than the dark irradiance. The initial pattern
results from the diffusion and photovoltaic effects.~a! N251 and
D51022, diffusion plays no significant role;~b! N251 and D
51021, diffusion and drift mechanisms compete.
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IV. TIME EVOLUTION OF THE SOLITON PROFILE

The termD of Eq. ~18! has been numerically found to
induce adiabatic self-deflection in the soliton beam@19#.
Therefore, Eq.~18! cannot exhibit strict soliton solutions un-
lessD is considered null. In this section we investigate the
time behavior of the soliton profile by neglectingD in Eq.
~18!, which means that the diffusion mechanism of transport
is neglected. Therefore, for simplification purposes and with
no loss of generality, we will assume that the initial space-
charge field can be considered as uniform. This is particu-
larly the case in the experimental observations on Bi12TiO20
presented in Sec. V. The equation that describes the wave
propagation under these hypotheses is then Eq.~19!.

Let us assume thatU(X,Z,t) is a soliton beam: its shape
does not change throughout the propagation. It can therefore
be expressed as

U~X,Z,t !5Arg~X,t !einZ, ~22!

in which r is the ratio of the soliton beam peak intensity over
the dark irradiance,n is the propagation constant, which will
be determined later, andg is the normalized soliton profile
bounded between 0 and 1@g(0)51, g(`)50#.

Integrating Eq.~19! using ~22! and the above boundary
conditions, an analytical expression ofn can be found:

n52
N2

r
ln~11r !1

N2

r FEiS 2
I dt

(
~11r ! D2EiS 2

I dt

( D G
1

(

I dtr
@e2~ I dt/(!~11r !2e2I dt/(#. ~23!

Here Ei is an exponential integral function defined by
Ei(z)52*2z

` (e2t/t)]t.
The soliton profileg is then given by the differential

equation onX ~24!, derived from~19! and ~22!,

22ng1g92~12e2~ I dt/(!~11rg2!!S 2N2
g

11rg2D
22ge2~ I dt/(!~11rg2!50, ~24!

whereg9 is the second derivative ofg with respect toX.
This equation can be numerically integrated by conventional

methods. Figure 5 shows three examples of the time evolu-
tion of the normalized soliton profile towards the so-called
screening soliton@11#, reached at steady state. The numerical
values taken for Fig. 5 areN251 andr5100, typical of our
experiments. The high value forr explains the large screen-
ing soliton diameter~or low self-focusing power!. Neverthe-
less, Fig. 5 shows that, during transient state, the self-
focusing power is stronger.

Such calculations allow us to compute the time evolution
of the soliton half-width at half maximum~HWHM! shown
in Fig. 6. The time normalization factorTe used in Figs. 5–8
is Te5(/I d . For high saturation values~i.e., r.1!, the soli-
ton HWHM reaches a minimum during transient state. This
is the so-called quasisteady soliton@10#.

Figure 7 shows the diameters of the screening soliton
~plain curve! and of the quasisteady soliton~dotted curve!. It
shows that, as suggested in Refs.@1,2#, the diameter of the
quasisteady soliton does not depend onr as long as it is
larger than 1. On the contrary, for small values ofr , the
soliton HWHM minimum is reached at steady state, since the
photorefractive process does not saturate anymore. The qua-
sisteady soliton and the screening soliton thus merge for
small values ofr and their common spatial behavior is that
of the Kerr soliton.

Figure 7 summarizes the main results of the above tem-
poral analysis. It confirms the existence of photorefractive

FIG. 5. Time evolution of the normalized soliton profile for
N251 andr5100, typical experimental values.

FIG. 6. Time evolution of the normalized soliton HWHM for
the same conditions as in Fig. 5.

FIG. 7. Soliton HWHM as a function ofr : solid line, the screen-
ing soliton~steady state!; dotted line, the quasisteady soliton~mini-
mum HWHM reached during transient state!.
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quasisteady solitons and retrieves their main properties,
found previously by analytical means in Refs.@1,2#, such as
their independence upon the absolute light intensity and on
its ratio to dark irradiance, provided it is larger than unity.
Furthermore, it confirms the existence of photorefractive
screening solitons predicted by Ref.@11#.

Figure 8 shows the time needed to reach the quasisteady
soliton as a function ofr . For small r , this time tends to
infinity. This explains the points off the line, due to the lack
of computation precision. The curve linearity shows that this
response time is inversely proportional to a power ofr de-
fined by the slope of the line. ForN251, it can be deduced
from Fig. 8 thatr * (t/Te) is a constant. This suggests that the
response time can be as short as desired, providedr can be
increased enough. However, further analysis of the soliton
HWHM time behavior seems to show that the lifetime of the
quasisteady soliton is roughly proportional to its time re-
sponse, which may be a limit to the use of short-response-
time quasisteady soliton.

V. EXPERIMENTAL RESULTS

In order to have a first validation of the previously de-
tailed theoretical results, we have experimentally investi-
gated the photorefractive self-focusing with the experimental
setup shown in Fig. 9. A 4 mW polarized HeNe laser is
focused onto a Bi12TiO20 crystal, so that its waist is around
30 mm. Its polarization is set to be parallel to the electric
field applied to the Bi12TiO20 crystal. Its intensity is reduced
with two rotating polarizers so that its power density on the
entrance face of the crystal is of the order of the mW/cm2

level. The crystal is 3.17 mm in length and the electric field
is applied onto the 4.17-mm-long transverse dimension. The
remaining dimension is 4 mm in length. A 5 mW, 670 nm
diode laser is used to provide a uniform background light to
the crystal so as to simulate the effects of the dark irradiance.
An interference bandpass filter tuned to the 633-nm laser
wavelength is used to separate the soliton beam issued from
the HeNe laser from the 670 nm light that is channeled into
the self-induced waveguide.

A 1 mm aperture is placed at 12 cm away from the exit
face of the crystal. The light transmitted through it is gath-
ered onto a photodiode. This is a spatial filtering technique
that allows, as shown below, one to directly measure the
output beam diameter.

Let d be the radius of the aperture andL its distance to the
crystal. The wave surface on the exit face of the crystal is
assumed to be plane, which is precisely true if a soliton beam
is generated@3#. Though it is not strictly needed, we will
assume the wave profile to be Gaussian. This hypothesis is
used to help carry out the calculations, but the general dif-
fraction properties of light are so that the method remains
valid for profiles that are not strictly Gaussian.

Using the complex curvature method, it is straightforward
to show that the beam profile on the aperture plane is, when
normalized to 1,

I ~x!5
e2~x/W1

2
!2

W1
2 with W15

lL

pW0
.

HereW0 is the radius of the beam on the exit face of the
crystal. It can then be readily shown that the total normalized
light intensity transmitted through the aperture is

I a5pS 12
1

e~dpW0 /lL !2D .
On our experimental apparatus,l5633 nm,L5125 mm,
and d50.5 mm. Figure 10 shows that in that case,I a is
quasiproportional toW0 as long as it is less than 100mm.
Therefore this spatial filtering technique allows, by measur-
ing I a , to have a real time measurement of the output beam
diameter.

Figure 11 shows the output beam diameter against time
when the externally applied voltage is suddenly switched on
and then switched off after 40 s. The beam undergoes a
temporary self-focusing lasting a few seconds before relax-
ing to a less focused state. This is consistent with the above
theory and fits with Fig. 6, as well as with the numerically
evaluated beam profile time behavior from Ref.@15#.

Figure 12 shows the influence of photorefractive satura-
tion upon both the transient and the steady state. The relative
output diameter is plotted against the ratio of the beam peak

FIG. 8. Time to reach the quasisteady soliton state, as a function
of the peak power to dark irradiance ratior . Each point shows one
calculated time, whereas the solid line is a mere guide to the eye.
The points off the line are due to the lack of computer precision.
The curve linearity suggests thatr * (t/Te) is a constant.

FIG. 9. Experimental setup for the observation of the soliton
phenomenon in Bi12TiO20.
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power over the dark irradiance. A relative output diameter of
1 means that the beam has propagated with no change of
shape: a soliton beam has been achieved. Below 1, it means
that the beam overfocuses: the nonlinearity is too strong to
generate a first-order soliton. A value of 1.05 means that no
effect can be noticed. Indeed, it is the value reached with no
electric field applied, the material then being considered lin-
ear.

It should be noticed, though, that the physical phenom-
enon measured in Figs. 11 and 12 is not exactly what is
plotted in Figs. 6 and 7. Indeed, the former show the ratio of
the output diameter over the input one, which could be called
the self-focusing power, whereas the latter show the soliton
diameter, which is assumed to exist. Though these phenom-
ena result from the same basic physical effects, they are not
strictly identical. Therefore these two pairs of curves, though
they are quantitative, cannot be strictly compared quantita-
tively.

The solid curve in Fig. 12 corresponds to the steady-state
experimental results. It is in good agreement with Fig. 7 and
with Ref. @18#, along with the experimental results presented
in Ref. @23#. The dotted curve of Fig. 12 shows the minimum

diameter achieved during transient state. It joins the solid
curve for small values of the peak intensity to dark irradiance
ratio: if the beam peak local intensity is lower than that of
the dark irradiance, the photorefractive effect does not satu-
rate and the minimum achieved diameter is that of a steady
state. It is not quite clear why the same thing happens for
large values of the intensity ratio. Nevertheless, this is prob-
ably due to the fact that, as Fig. 8 suggests, the transient state
is too short in time for our measurement apparatus to catch
it. If this assumption is correct, our experimental results are
in good agreement with Fig. 7 and with the experimental
quasi-steady-state soliton results of Ref.@24#: they all sug-
gest that the quasi-steady-state soliton does not depend onr ,
provided it is large enough.

Aside from this latter point, the experimental results pre-
sented here are in good agreement with the above theoretical
study. Further experimental investigations aimed at charac-
terizing the steady-state and transient self-focusing as well as
spatial soliton beams on other and better quality crystals are
on the way.

CONCLUSION

We have investigated the temporal behavior of the photo-
refractive effect, on the basis of a bidimensional band-
transport model. We have shown that the photovoltaic effect
and the drift mechanism of charge transport could be thought
of as similar and their effects are additive. We have derived
a time-dependent wave propagation equation in generic pho-
torefractive media, which describes the propagation of any
light beam, provided that its transverse profile is smooth
enough so that the slow variation approximation is valid.
This equation exhibits bright spatial soliton solutions whose
evolution against time has been investigated. It describes
successfully the behavior of the three previously found
bright soliton types, namely, the quasisteady, steady-state,
and photovoltaic solitons, whose properties are consistent
with previous theoretical studies. In particular, the quasi-
steady soliton diameter is found to be independent of the
ratio of the light peak intensity over the dark irradiance, pro-

FIG. 10. Transmitted intensity through the aperture as a function
of the output beam waist.

FIG. 11. Measured output beam waist using the spatial filtering
technique, for an input beam waist of 30mm. The dotted lines show
the applied voltage~to a 4-mm-wide crystal!. The output beam
waist, shown by the solid line, undergoes temporary self-focusing
and relaxes to a self-focused state until the voltage is switched off.

FIG. 12. Measured ratio of the output beam waist over the input
beam waist versus peak power to dark irradiance ratio, for an input
beam waist of 30mm. The squares show the raw measurements of
the steady-state ratio, the solid line being a simple guide. The
crosses show the measured minimum transient ratio, the dotted line
showing the expected and explained behavior.
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vided it is larger than unity. Furthermore, it has been inti-
mated that the quasisteady soliton state could be reached as
rapidly as desired, provided the above intensity ratior can be
raised sufficiently. In addition, we have suggested that the
diffusion process could induce a beam bending, which might
be controlled, along with the soliton beam diameter, by an
externally applied electric field. Finally, an experimental
validation of these theoretical considerations has been pro-
vided, which confirms the various conclusions stated above.
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